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INVITED EDITORIAL
The Size Distribution of Homozygous Segments in the Human Genome
Andrew G. Clark
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Introduction

When we say that an individual is homozygous for a
gene, we mean that both copies of the gene are identical
in sequence. If one were to obtain DNA sequences flank-
ing such a gene, one might imagine that the homozy-
gosity would continue for some distance in either direc-
tion. Theoretically, the lengths of segments of homozy-
gosity will depend, in a complicated way, on the mu-
tation rate, the effective population size, the effect of
mutations on reproductive fitness, population subdivi-
sion and growth, and the pattern of inbreeding in the
population. Sampling of human polymorphisms to date
has not been designed to identify the length of such
homozygous segments, because it would take either a
concerted sequencing effort aimed just at this problem
or very dense SNP genotyping to see significantly long
segments of homozygosity. In cases in which sequencing
from diploid individuals was done, no homozygous
blocks larger than 8 kb were found in lipoprotein lipase
(Clark et al. 1998) and none larger than 13 kb were
found in ACE (Rieder et al. 1999). These cases represent
only a small window into the genome, and so they tell
us nothing about the size of the largest homozygous
segment along an entire chromosome. Empirical deter-
mination of the distribution of sizes of these blocks of
homozygosity in the human genome had to await the
development of sufficient numbers of polymorphic
markers and the will to test large numbers of such mark-
ers in individuals.

In this issue, Broman and Weber (1999) have done an
analysis of an array of 8,000 STRPs in the CEPH fam-
ilies, and their remarkable finding is that several families
have average largest homozygous segments of 110 cM,
even among “outbred” individuals (from Utah and Ven-
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ezuela). The identification of homozygous segments
from STRP data involved a few technical hurdles that
had to be surmounted. There is a low level of typing
error that must be modeled and accounted for, and Bro-
man and Weber do so with a likelihood approach. STRPs
also have the nasty habit of back mutation, so a recom-
bined block may appear to have been unrecombined if
an STRP allele mutated back. Given the density of mark-
ers used, recombination events are likely to cause blocks
of several STRP differences to be exchanged. Gene-con-
version events may make exchanges of single microsat-
ellite loci and may thus be difficult to distinguish from
typing errors. Broman and Weber use a reasonable heu-
ristic approach to controlling these confounding effects,
and, even if one ignores such smaller exchanges, large
blocks of homozygosity are clearly evident. The chal-
lenge is to determine whether we should be surprised at
the finding of runs of homozygosity 110 cM in length
in outbred human populations.

Modeling a Single Genomic Segment

Before formulating a model for homozygous seg-
ments, we must first distinguish between several kinds
of identity that may be observed across a region. An
“unrecombined autozygous segment” is one that has
been passed without recombination from a common an-
cestor along two lineages and into the observed individ-
ual. An “autozygous segment” is a run of DNA that has
passed along two lineages from a common ancestor but
may have recombined apart and back together again. A
“homozygous segment” is a run of DNA in which every
site in the two homologous chromosome copies is iden-
tical. Note that a homozygous segment may be, but is
not necessarily, an autozygous segment, because two
quite remote copies of part of the gene may be identical
after multiple mutation and recombination events. Fi-
nally, “apparent homozygous segments” are actually dif-
ferent but appear to be identical because of scoring er-
rors. The empirical data tell us about homozygous
segments, but it is much easier to model unrecombined
autozygous segments, so, for now, we will restrict our
attention to this case.

Let’s follow the segment surrounding one particular
gene and model the occurrence of flanking recombina-
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Figure 1 A, Decline in size of unrecombined segments with in-
creasing numbers of recombination events. The solid line is from the
theoretical prediction (eq. 1), and the dots are from 1000 replicates
of dropping recombination events on a unit line (length 100 cM). B,
Distribution of lengths of unrecombined segments for 10 recombi-
nation events (hatched bars) and for 50 recombination events (solid
bars).

tion events. Imagine that each time recombination oc-
curs, the exchange is with a chromosome drawn from
the population that is not identical by descent to the
initial chromosome. Further imagine that the only way
that the two copies of the gene can be identical by de-
scent is for both to arrive unrecombined in the observed
individual. That is to say, we will initially assume there
is exactly one path of coancestry. This assumption is
certainly violated in reality, but bear with it for the
moment.

A recombination event anywhere along the path of
coancestry will terminate the autozygous segment. We
can model the size of unrecombined segments by focus-
ing on one autozygous segment and specify the proba-
bilities of recombination events as we move along the
chromosome. If recombination events occur indepen-
dently (zero linkage interference), the probability of re-
combination will be constant as we move along the
chromosome. The distribution of intervals between re-
combination events would then be exponential: F(x) =
1 � e�lx, where l is a rate parameter. In this case, the
number of recombination events along a chromosome
of length t will be Poisson: Pr{N(t)=k} = .k �lt[(lt) e ] /k!
This defines a Poisson renewal process, which allows us
to calculate many features of the size distribution of
unrecombined segments (Karlin and Taylor 1975). It is
clear that the longer the time back to the common an-
cestor, the more recombination events will have occurred
and the smaller the unrecombined segments will be.

To find the largest unrecombined segment given that
the chromosome has been broken into r segments, imag-
ine dropping the r�1 recombination events along a unit-
length line. If we identify a particular segment that is
autozygous, and if we can count the number of meioses
that have occurred since the common ancestor of the
middle of this segment, then the expected size of the
autozygous region is

r1 1
( )E largest segment = . (1)�

r r � i � 1i=1

This formula was first derived for a model called,
somewhat whimsically, the “broken stick” model for
relative species abundances (MacArthur 1957). It is
straightforward to simulate the process of distributing
recombination events along a chromosome, and the cor-
respondence between equation 1 and the simulations is
quite good (table 1 and fig. 1A). One might think that
this process would give a very dispersed distribution,
but figure 1B shows that the largest unrecombined seg-
ment is fairly tightly dispersed. Although this is a grossly
oversimplified model, we can get some useful insights
from it. When Broman and Weber (1999) find that in-
dividuals in family 884 had homozygous segments av-

eraging 11 cM, we can see that this means the chro-
mosomes in which those segments were found faced
35–40 recombination events in the lineages back to the
common ancestor.

Coalescence Models

The model and simulation presented above both lack
complications that are encountered in real populations.
We assumed that each individual has only one path of
coancestry, whereas actual individuals will have
thousands of paths of coancestry if one looks back far
enough. Furthermore, the set of paths of coancestry will
be radically different from one chromosomal location to
another. Finally, two adjacent segments can be com-
pletely homozygous but have different ancestral histo-



Clark: Invited Editorial 1491

Table 1

Mean and Maximum Size of Autozygous Segments for a Range of
Intervening Recombination Events on a Single, 100-cM
Chromosome

NO. OF

RECOMBINATIONS

SEGMENT SIZE

(cM)

Meana Maximuma

Expected
Maximumb

5 16.67 40.90 40.83
10 9.09 26.21 27.45
15 6.25 20.96 21.13
20 4.76 16.92 17.36
25 3.85 14.49 14.82
30 3.23 12.77 12.99
35 2.78 11.24 11.60
40 2.44 10.31 10.49
45 2.17 9.64 9.60
50 1.96 8.84 8.86

a From 1,000 simulations.
b From equation 1.

ries, if recombination breaks them apart and later
patches them back together. These complications must
be built into any model that attempts to explain obser-
vations like those of Broman and Weber (1999). For-
tunately, there is a rich history of work on this problem
in theoretical population genetics, and a brief review is
in order.

Kingman (1982) first developed the coalescence
model, wherein the genealogical relationships among un-
recombining alleles sampled from an equilibrium pop-
ulation were described. The basic idea was to consider
an extant sample of k alleles from a population and to
model the distribution of times back to “coalescence”
of some pair of alleles into an ancestral allele, at which
point there would be k�1 alleles. This recursive process
continues back in time until there is a single ancestral
allele. In a chromosome with recombination, each un-
recombined segment follows this coalescent formulation,
so Hudson (1983) considered the case with recombi-
nation by keeping track of the recombination events that
broke up the coalescence into such segments. Hudson
and Kaplan (1985) showed that this theory could be
used to estimate numbers of recombination events on
the basis of sample data from extant populations.

An elegant formulation of the problem, known as an
“ancestral recombination graph” (Griffiths and Marjo-
ram 1996, 1997), allowed the calculation of distribu-
tions of times of common ancestry on the basis of the
full configuration of mutations observed in sampled al-
leles. The ancestral recombination graph traces the his-
tory of sampled sequences back in time, merging two
alleles when coalescence events occur (as above), but
splitting the lineage into two when recombination events
occur. Wiuf and Hein (1997) derived expressions for the
number of ancestral sequences on such a graph and

showed that it can become much larger than the sample
size, as a result of recombination, but also that, even
with recombination, the process must end by coalescing
to a single ancestral allele. Wiuf and Hein (1999a,
1999b) derived results that are most relevant to the pre-
sent problem, obtaining expressions for the number of
adjacent nucleotides that share the same common an-
cestor. We might also want to know the distribution of
times back to a common ancestor for different regions
of a chromosome, on the basis of data like that of Bro-
man and Weber (1999), and the computational load for
obtaining these estimates was recently reduced by ap-
plying a Monte Carlo Markov chain (Griffiths 1999).
Finally, Metropolis-Hastings sampling has been shown
to be very effective for obtaining parameter estimates in
coalescence models (Kuhner et al. 1998; Beerli and Fel-
senstein 1999) and is being applied to intragenic recom-
bination as well (Felsenstein et al. 1999). Although these
methods do not explicitly consider segments of homo-
zygosity, one gets the needed estimates simply by con-
sidering properties of common ancestry of segments
drawn as pairs from the population.

Consideration of sizes of shared chromosomal seg-
ments flanking a particular mutation has emerged as an
important problem relevant to linkage disequilibrium
mapping, and recent progress has been reported on this
problem as well (Donnelly and Wiuf 1999; McPeek and
Strahs 1999).

All the above models have assumed random mating,
and the possibility for consanguinity in human popu-
lations needs to be considered. Recently, Nordborg
(1999) showed that partial selfing can be accounted for
in coalescence models with recombination by scaling the
parameters for the population size and rate of recom-
bination, and this approach should work for other forms
of inbreeding as well.

Further Refinements and Applications

In the field of population genetics, there is a rich his-
tory of advancements made by noting discrepancies be-
tween models and theory. If observed segments of au-
tozygosity differ in size from model predictions, we can
begin to identify several possible reasons. First, natural
selection will remove from the population those indi-
viduals who are autozygous for very deleterious alleles,
leaving a smaller-than-expected block size. We do not
tend to keep track of consanguinity if the potential com-
mon ancestor is more than four or so generations back,
but having common ancestors five, 10, or even 20 gen-
erations ago is far from being “outbred” in the context
of tracking homozygous segments in entire genomes.
Very large segments can remain intact for long periods
(fig. 1a). There will be large sampling problems to face,
and the identification of homozygous blocks will depend
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on marker density and heterozygosity, as Broman and
Weber (1999 [in this issue]) illustrate. Population growth
will also distort the distribution of times back to com-
mon ancestry (Bertorelle and Slatkin 1995), and this may
be especially evident in distributions of homozygous seg-
ments. Regions of the genome with low levels of recom-
bination per megabase are expected to have larger seg-
ments of homozygosity. Observation of unexpectedly
large homozygous blocks may also have a genetic cause,
such as uniparental disomy (Smith et al. 1994; Martin
et al. 1999; Uehara et al. 1999). Our ascertainment for
uniparental disomy is through clinical cases, and, if some
uniparental disomy for some chromosomes is asymp-
tomatic, this phenomenon may well be more common
than currently thought.

Coalescence approaches will allow us to take the ex-
citing step of turning these problems around, making
inferences, and estimating population parameters from
observed distributions of homozygous segment lengths.
Although classical population-genetics theory tells us
that one can have the same net inbreeding coefficient
either with one short path of common ancestry or with
several longer paths, the consequences will be very dif-
ferent for the distribution of blocks of homozygosity.
The complete genome sequence of an individual will give
the complete distribution of homozygous segments, and
this distribution will allow unprecedented resolution for
inferences about the number and depth of common an-
cestors. Many interesting inferential challenges will arise
when we consider the population genetics of whole
genomes.
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